If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-78x+716=0
a = 1; b = -78; c = +716;
Δ = b2-4ac
Δ = -782-4·1·716
Δ = 3220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3220}=\sqrt{4*805}=\sqrt{4}*\sqrt{805}=2\sqrt{805}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-2\sqrt{805}}{2*1}=\frac{78-2\sqrt{805}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+2\sqrt{805}}{2*1}=\frac{78+2\sqrt{805}}{2} $
| 2x-(-x+6)=-4x+2×(x+8)+18 | | y/7-9=8 | | (6x+3)/(x+3)=3 | | 7(6+7)=5c+59 | | 3x-45=-0.5x-159.83 | | 25+x^2=13^2 | | a/4+5=6 | | -36-6m=-8(4m-2) | | p^2-4p=-4 | | 3(3−3x)=2(x+3)−30 | | n^2+81=15^2 | | 5*6^3x=25 | | 5/4y=40,y | | 6(1+7n)=-30+6n | | 49/4=135/x | | 18r-8r=20 | | 16c+4c=980 | | h+-3h-12h=-14 | | -6(7n+3)+5=-13+3n | | (2x+1)2-(x+13)=3x2-2x+2 | | 7−2p=2p+5+2p | | 4(m-2)=243 | | 2(2x=4)=14 | | 180=7x+24+3x+92 | | -8/5+1/2v=-2/3 | | 9u+u-10u+4u-u=18 | | -3x=-25.2 | | 2(x-1)=3x=3 | | 5x+6-2=3x7 | | -6k+15k-20k-7k=18 | | 180=5x-12+2x+24 | | 16x-4=12x |